Lead and Copper Table 2013:

<table>
<thead>
<tr>
<th>Contaminant (units)</th>
<th>Maximum Contaminant Level (ppb)</th>
<th>Results</th>
<th>Sources in Drinking water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (ppb)</td>
<td>Action level = 15 ppb 90th percentile</td>
<td>0 ppb</td>
<td>Corrosion of household plumbing systems, Erosion of natural deposits</td>
</tr>
<tr>
<td>Copper (ppm)</td>
<td>Action level = 1.3 ppm 90th percentile</td>
<td>0.24 ppm</td>
<td>Corrosion of household plumbing systems, Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Notes:

* The data allows water systems to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative, is more than one year old. The Lead and Copper Table contained in this brochure summarizes analytical tests conducted on Chandler’s drinking water in 2013.

** Some average values are less than the low range due to substituting non-detect (<) values with zero, per the regulations governing compliance calculations.

Definitions:

- **Parts per million (ppm):** Parts per million are a measurement of concentration of substances dissolved in water. One part per million is equal to one milligram in one million gallons. Parts per billion (ppb): Parts per billion are a measurement of concentration of substances dissolved in water. One part per billion is equal to one microgram in one billion gallons. A ppb is a thousand times smaller than a ppm.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is no known or expected risk to health. MRDLs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Action Level (AL): The concentration of a contaminant, which if exceeded, triggers treatment or other requirements that may be necessary to reduce the level of the contaminant to a safe level.

Treatment Technique (TT): A required process to reduce the level of a contaminant in drinking water. TT = < or = 0.3 NTU 95% of the time

MRDLG Violation

- **No**
- **Erosion of natural deposits**

Range of Samples (Low to high)

- **<2.0 – 7.2**
- **<0.6 – 2.3**
- **<0.4 – 1.6**
- **<0.1 – 6.9**
- **<0.6 – 2.3**

Copper (ppm) Action Level = 1.3 ppm 90th percentile

<table>
<thead>
<tr>
<th>Samples</th>
<th>Range of Samples (Low to high)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 ppm</td>
<td><1.0 – 22</td>
</tr>
<tr>
<td>0.24 ppm</td>
<td>0</td>
</tr>
</tbody>
</table>

Distribution System Detections 2015:

<table>
<thead>
<tr>
<th>Contaminant (units)</th>
<th>Maximum Contaminant Level (ppb)</th>
<th>MCLG</th>
<th>Results</th>
<th>MCL Violation</th>
<th>Sources in Drinking water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (ppm)</td>
<td>Maximum Contaminant Level = 0.3 ppm</td>
<td>0.015</td>
<td>0.015 ppm</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Notes:

- **Average (of samples):** The average of all samples taken during the monitoring period.
- **Range of Samples (Low to high): The lowest analytical result reported to the highest analytical result reported. All other analytical results fall between these two numbers.

Lead and Copper Table 2013:

<table>
<thead>
<tr>
<th>Contaminant (units)</th>
<th>Maximum Contaminant Level (ppb)</th>
<th>Results</th>
<th>Sources in Drinking water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (ppb)</td>
<td>Action level = 15 ppb 90th percentile</td>
<td>0 ppb</td>
<td>Corrosion of household plumbing systems, Erosion of natural deposits</td>
</tr>
<tr>
<td>Copper (ppm)</td>
<td>Action level = 1.3 ppm 90th percentile</td>
<td>0.24 ppm</td>
<td>Corrosion of household plumbing systems, Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Notes:

* The data allows water systems to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative, is more than one year old. The Lead and Copper Table contained in this brochure summarizes analytical tests conducted on Chandler’s drinking water in 2013.

** Some average values are less than the low range due to substituting non-detect (<) values with zero, per the regulations governing compliance calculations.

Definitions:

- **Parts per million (ppm):** Parts per million are a measurement of concentration of substances dissolved in water. One part per million is equal to one milligram in one million gallons. Parts per billion (ppb): Parts per billion are a measurement of concentration of substances dissolved in water. One part per billion is equal to one microgram in one billion gallons. A ppb is a thousand times smaller than a ppm.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is no known or expected risk to health. MRDLs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Action Level (AL): The concentration of a contaminant, which if exceeded, triggers treatment or other requirements that may be necessary to reduce the level of the contaminant to a safe level.

Treatment Technique (TT): A required process to reduce the level of a contaminant in drinking water. TT = < or = 0.3 NTU 95% of the time

MRDLG Violation

- **No**
- **Erosion of natural deposits**

Range of Samples (Low to high)

- **<2.0 – 7.2**
- **<0.6 – 2.3**
- **<0.4 – 1.6**
- **<0.1 – 6.9**
- **<0.6 – 2.3**

Copper (ppm) Action Level = 0.3 ppm 90th percentile

<table>
<thead>
<tr>
<th>Samples</th>
<th>Range of Samples (Low to high)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 ppm</td>
<td><1.0 – 22</td>
</tr>
<tr>
<td>0.24 ppm</td>
<td>0</td>
</tr>
</tbody>
</table>

Distribution System Detections 2015:

<table>
<thead>
<tr>
<th>Contaminant (units)</th>
<th>Maximum Contaminant Level (ppb)</th>
<th>MCLG</th>
<th>Results</th>
<th>MCL Violation</th>
<th>Sources in Drinking water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (ppm)</td>
<td>Maximum Contaminant Level = 0.3 ppm</td>
<td>0.015</td>
<td>0.015 ppm</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Notes:

- **Average (of samples):** The average of all samples taken during the monitoring period.
- **Range of Samples (Low to high): The lowest analytical result reported to the highest analytical result reported. All other analytical results fall between these two numbers.

Chandler Detected Regulated Contaminants 2015:

<table>
<thead>
<tr>
<th>Contaminant (units)</th>
<th>Average (of samples)</th>
<th>Range of Samples (Low to high)</th>
<th>MCL Violation</th>
<th>Likely Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic (ppb)</td>
<td>10.0</td>
<td>0.015 – 0.16</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Barium (ppm)</td>
<td>2.0</td>
<td>0.017 – 0.16</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Chromium (ppb)</td>
<td>100.0</td>
<td><2 – 24</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride (ppb)</td>
<td>4.0</td>
<td><0.4 – 1.6</td>
<td>No</td>
<td>Natural deposits, water additive that promotes strong teeth</td>
</tr>
<tr>
<td>Iron (ppb)</td>
<td>2.0</td>
<td><0.2 – 1.3</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Nickel (ppb)</td>
<td>100.0</td>
<td><2.0 – 7.2</td>
<td>No</td>
<td>Erosion of natural deposits, released from industrial processes</td>
</tr>
<tr>
<td>Nitrate (ppm)</td>
<td>10.0</td>
<td><0.1 – 6.9</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Sodium (ppm)</td>
<td>N/A</td>
<td>81 – 290</td>
<td>No</td>
<td>Natural deposits</td>
</tr>
<tr>
<td>Benzo[a]Pyrene (ppb)</td>
<td>200.0</td>
<td><2.0 – 20</td>
<td>No</td>
<td>Erosion of natural deposits, released from industrial processes</td>
</tr>
<tr>
<td>alpha-Ethyl Methyl</td>
<td>15.0</td>
<td><0.1 – 1.6</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Uranium (ppm)</td>
<td>50.0</td>
<td><0.8 – 5.8</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Total Radon (pCi/L)</td>
<td>5.0</td>
<td><0.125 – 2.3</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Notes:

- **PPB equals Parts per billion:** Parts per billion are a measurement of concentration of substances dissolved in water. One part per billion is equal to one microgram in one billion gallons. A ppb is one thousand times smaller than a ppm.

Non-Applicable (N/A): EPA has not set MCLs or MCLGs for these substances.

City of Chandler 2015 DRINKING WATER QUALITY CONFIDENCE REPORT

Mayor Jay Tibshraeny & City Council

Este informe contiene información muy importante sobre su agua beber. Tradúzcalo ó hable con alguien que lo entienda bien.
About your Water Supply

The drinking water for the City of Chandler is obtained from the following sources:

- **Chandler Surface Water Treatment Plant (SWTP):** Treats and disinfects water from the Salt River, Verde River, Central Arizona Project (Colorado River), and Salt River Project (SRP) wells. Water is transmitted to Chandler via the Consolidated Canal.
- **City of Chandler:** Supplies 29 active wells from aquifers underlying the city. Groundwater is disinfected with chlorine prior to transmission to the City's drinking water distribution system.
- **City of Chandler and the Town of Gilbert:** Jointly own the Santa Tan Water Treatment Plant (SWTP) located in the Town of Gilbert. This facility currently treats and distributes up to 12 percent of Chandler’s drinking water from the Central Arizona Project to each city. We have included compliance information supplied by the SWTP.

City of Chandler Water Supply Statistics

<table>
<thead>
<tr>
<th>19.9 billion gallons of drinking water were supplied to Chandler water users in 2015.</th>
<th>2015. (A daily average of 54.6 million gallons.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chandler’s SWTP produced 11.4 billion gallons, or 57.4% of the City’s total drinking water.</td>
<td>Groundwater wells produced 4.3 billion gallons, or 21.6% of the City’s total drinking water.</td>
</tr>
<tr>
<td>The SWTP supplied 4.19 billion gallons, or 21% of the City’s total drinking water.</td>
<td>The City of Chandler is responsible for providing high-quality drinking water and meeting the health-related requirements of all materials used in household plumbing components. When your water has been setting for several hours, you may experience the potential for lead exposure by drinking your tap water for 30 seconds to 1 minute before using water for drinking or cooking. If you are concerned about lead in your water, you should have your water tested by a commercial laboratory. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the EPA’s Safe Drinking Water Hotline (1-800-426-4791) or at www.epa.gov/safewater/lead.</td>
</tr>
</tbody>
</table>

Drinking Water and your Health

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. Some people may be more vulnerable to contaminants in water than the general population. Immuno-compromised persons with cancers under treatment, pregnant women, and children may be particularly vulnerable to contaminants in drinking water. Cancer is a genetic disease caused by the presence of an abnormal number of genes. Cancer can stem from a variety of sources, including environmental, genetic, and lifestyle factors. Some people may be more vulnerable to contaminants in water than the general population. Immuno-compromised persons with cancers under treatment, pregnant women, and children may be particularly vulnerable to contaminants in drinking water. Cancer is a genetic disease caused by the presence of an abnormal number of genes. Cancer can stem from a variety of sources, including environmental, genetic, and lifestyle factors.

Contaminants of concern

Unregulated Contaminant Monitoring Regulation

The 1996 amendments to the Safe Drinking Water Act required the EPA to establish criteria for a program to monitor unregulated contaminants and publish a list of up to 30 contaminants to be monitored every five years. The EPA published the final rule for the Third Unregulated Contaminant Monitoring Cycle (UCMR3) in the Federal Register on May 2, 2012. UCMR3 requires a total of 28 compounds to be analyzed, with the Chandler’s assigned sampling period being calendar year 2014. Twenty of the 28 compounds are tested for naturally occurring contaminants in your water provided by public water systems. All the detections were in the lower parts per billion range, which is equivalent to one gram in one billion gallons.

Cryptosporidium and Giardia

The City of Chandler sampled its water for the presence of the protozoans Cryptosporidium and Giardia in 2005. Though rare, Cryptosporidium and/or Giardia have been identified in the source water Chandler receives from the Consolidated Canal. The filtration system in the City’s SWTP exceeds EPA requirements for removal of Cryptosporidium and Giardia. Analytical sampling began in 2015 and will be completed in 2017.

Nitrate

The highest nitrate level measured in Chandler’s water during 2015 was 9.9 parts per million (ppm). The average nitrate level was 2.8 ppm, which is well below the EPA limit of 10 ppm. Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. This condition may rise again for short periods of time due to rainfall or agricultural activity. If you are caring for an infant, you should ask advice from your health care provider.

Organic Chemicals Contaminants

Some people who drink water containing haloacetic acids in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

Disinfection byproducts

Total Trihalomethanes (THM)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Haloacetic Acids (HAAS)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Disinfection byproducts

Total Trihalomethanes (THM)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Haloacetic Acids (HAAS)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Disinfection byproducts

Total Trihalomethanes (THM)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Haloacetic Acids (HAAS)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Disinfection byproducts

Total Trihalomethanes (THM)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Haloacetic Acids (HAAS)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Disinfection byproducts

Total Trihalomethanes (THM)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Haloacetic Acids (HAAS)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Disinfection byproducts

Total Trihalomethanes (THM)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Haloacetic Acids (HAAS)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Disinfection byproducts

Total Trihalomethanes (THM)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Haloacetic Acids (HAAS)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Disinfection byproducts

Total Trihalomethanes (THM)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Haloacetic Acids (HAAS)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Disinfection byproducts

Total Trihalomethanes (THM)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Haloacetic Acids (HAAS)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Disinfection byproducts

Total Trihalomethanes (THM)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Haloacetic Acids (HAAS)

Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.
Protecting Chandler’s Water Supply

Backflow Prevention

The City of Chandler has a backflow prevention program ensuring proper installation and maintenance of thousands of backflow prevention devices throughout the City. These devices ensure hazards originating on customer’s property and from temporary connections do not impair or alter the water in the City’s water distribution system. Return of any water to the City’s water distribution system after the water has been used for any purpose on the customer’s premises or within the customer’s piping system is unacceptable. Backflow prevention devices range from vacuum breakers on household hose bibs to large commercial reduced-pressure principal devices found throughout the City.

Source Water Assessment and Protection Program (SWAP)

The Arizona Department of Environmental Quality (ADEQ) completed a source water assessment for drinking water wells and surface water sources for Chandler’s public water system in 2005. The assessment reviewed adjacent land uses that may pose a potential risk to water sources. These risks include, but are not limited to, gas stations, landfills, dry cleaners, agriculture fields, wastewater treatment plants, and mining activities. Once ADEQ identified the adjacent land uses, they were ranked on their potential to affect the water source.

All surface water sources are considered high risk due to their exposure to open air. The overall risk posed to surface water is addressed by EPA through its increased monitoring requirements for surface water sources.

Two of Chandler’s drinking water wells were considered high risk based on adjacent land use criteria. The Chandler public water system conducts regular monitoring of drinking water entering the water distribution system from all wells to ensure land uses have not impacted the source water.

The complete report is available for inspection at ADEQ, 1110 W. Washington, Phoenix, Arizona 85007, between the hours of 8:00 a.m. and 5:00 p.m. Electronic copies are available from ADEQ at dml@azdeq.gov. For more information, visit ADEQ’s Source Water Assessment and Protection Unit website at http://www.azdeq.gov/environ/water/dw/swap.html.

Storm Water Pollution Prevention Tips

“Be the solution to storm water pollution” – common storm water pollutants include sediment, motor oil and other vehicle fluids, pet waste, yard debris, metals, pesticides, fertilizers and herbicides, to name a few. For more information on storm water pollution prevention, please go to www.chandleraz.gov and search “stormwater”.
Guidelines for Everyday Pollution Prevention – “Only Rain In the Storm Drain”

- Sweep yard debris and properly dispose of in the trash, rather than blowing or hosing into the street.
- Contain pool or spa water on private property or dispose of it in the sanitary sewer cleanout associated with your home. For more information call 480-782-3507 or search “pool drainage” at www.chandleraz.gov.
- Use fertilizers and pesticides sparingly and as directed by the manufacturer.
- Pick up after your pet and properly dispose of the waste in the trash.
- Wash your car on a lawn or other unpaved surface, or use a commercial car wash.
- Always use a nozzle on your garden hose around the home. Do not let the water flow into the street.
- Maintain vehicles to be free of leaks and do not park leaking vehicles on the street.
- Do not over-water your lawn.
- Report illegal dumping into streets and storm drains by calling 480-782-3503 or at www.chandleraz.gov.
- Minimize your purchase and use of hazardous products. Dispose of unused quantities properly. Please contact Solid Waste Services at 480-782-3510 for proper disposal guidelines of hazardous waste materials such as used motor oil and other similar fluids.

Seasonal Changes in Flavor

The flavor of Chandler’s drinking water may change at certain times of the year, depending on the water source. Chandler works with SRP to minimize algae in the canal system and to provide treatment at the SWTP to reduce off-flavors and odors. Arizona State University and the City of Chandler have partnered to routinely monitor for taste and odor precursors in the Consolidated Canal. This allows the treatment plant to have more precise control over taste and odor events and to better utilize resources and manage costs.

Who do I contact with questions about Chandler’s Drinking Water?

If you have any questions about your tap water or the information in this report, please call 480-782-3660 during normal business hours (8:00 a.m. to 5:00 p.m., Monday through Friday). You can also visit our website at http://www.chandleraz.gov.

Citizens who wish to address the City Council about water issues may do so at regularly scheduled City Council meetings normally held the 2nd and 4th Thursday of each month. The meetings are held at Chandler City Hall Council Chambers, 175 S. Arizona Avenue. For information about specific meeting times and agenda items, please contact the City Clerk’s office at 480-782-2180, or visit http://www.chandleraz.gov and click on Government tab and then select City Council Agendas & Minutes from the drop down menu on the home page.